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• gM Mars g, 3.711 [m/s2]
• D Crack Depth [m]
• p1_p2 Ratio p1/p2
• p2 = r x gM x D Pressure in exit reservoir [Pa] = lithostatic 

p1 = p2 x p1_p2 Pressure in feeding reservoir [Pa]
• k Wall elasticity [Pa] (Channel Aspect Ratio)
• r Wall density [kg/m^3] =~ (magma density)
• A Elastic damping [kg s]
• h Fluid viscosity [Pa s]
• L Channel length [m]
• h0 Channel equilibrium thickness [m]
• M =~ r x L x L Wall mass [kg/m] (2D)

Tremor Source Model “Volcanic tremor: Nonlinear excitation by fluid flow” [Julian, JGR, 1994]

Viscoelastic response of channel walls:

Fluid equation of motion:
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• gM = 3.711 Mars g, 3.711 [m/s2]
• D = 60000.0; Crack Depth [m]
• p1_p2 Ratio p1/p2
• p2 = r x gM x D Pressure in exit reservoir [Pa] = lithostatic 

p1 = p2 x p1_p2 Pressure in feeding reservoir [Pa]
• k Wall elasticity [Pa] (Channel Aspect Ratio)
• r = 2700.0 Wall density [kg/m^3] =~ (magma density)
• A = 1E7 Elastic damping [kg s]
• h Fluid viscosity [Pa s]
• L = 500.0; Channel length [m]
• h0 Channel equilibrium thickness [m]
• M =~ r x L x L Wall mass [kg/m] (2D)

Tremor Source Model “Volcanic tremor: Nonlinear excitation by fluid flow” [Julian, JGR, 1994]
Model inputs correspond to physical properties of Mars

v(t) [m/s] fluid velocity

h(t) [m/s] distance between channel walls

ℎ̇ [m/s] Wall velocity

Model outputs 

Wave Propagation

Observational Constraints
• Observed waveforms

• Amplitude
• Duration
• Frequency

• (Magma volume estimates)

• Waveforms are synthesized using Instaseis databases created by Martin van 
Driel for the MQS blind test using the EH45Tcold model with two different 
crusts.

• Source is input with source time function defined by dh/dt from model runs, 
but normalized. Moment is defined with a “slip” value based on summed 
peak-to-peak variation of h. Fault area is defined with a 10 to 1 aspect ratio 
compared with L.
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Narrowing Down the Model Parameters Trade Space
(1) Since the observed events are intermittent and finite we limit the 
parameters trade space to a small perturbation about steady state conditions.

(2) Once the parameters space is thus 
limited we will further narrow it down to 
the subset of models that are consistent 
with observations.h = 200 [Pa s]

h = 200 [Pa s]

Steady state
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Sample Model Runs

k = 5e10 Pa;  h = 200 Pa s;  h0 = -1.5 m

k = 5e10 Pa;  h = 200 Pa s;  h0 = -2.5 m

k = 1.8e10 Pa;  h = 200 Pa s;  h0 = -1.5 m

k = 5e10 Pa;  h = 500 Pa s;  h0 = -2.5 m 1 (R=~0.53)

2 (R=~0.55)

3 (R=~0.58)

4 (R=~1.82)
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Summary

• It is likely that most of the observed signal can be modeled by a 
volcanic tremor model with realistic physical parameters
• However, it is impossible to uniquely conclude that the observed 

events are induced by magma motion.
• Future work: Complete a comprehensive exploration of the 

parameter space and explore the range of geodynamic conditions 
that can support them.
• Combine with analysis of Cerberus (Jacob & Perin + Golombek)
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